
The Google Query Language syntax is designed to be similar to SQL

syntax. However, it is a subset of SQL, with a few features of its own

that you'll need to learn. If you're familiar with SQL, it shouldn't be too

hard to learn.

Table used in all examples:

Throughout this section, all examples of queries refer to the following

table. The column headers are the column identifiers.

name

string

dept

string

lunchTime

timeofday

salary

number

hireDate

date

age

number

isSenior

boolean

seniorityStartTime

datetime

John Eng 12:00:00 10002005-

03-19

35 true 2007-12-02

15:56:00

Dave Eng 12:00:00 5002006-

04-19

27 false null

Sally Eng 13:00:00 6002005-

10-10

30 false null

Ben Sales 12:00:00 4002002-

10-10

32 true 2005-03-09

12:30:00

Dana Sales 12:00:00 3502004-

09-08

25 false null

Mike Marketing13:00:00 8002005-

01-10

24 true 2007-12-30

14:40:00

Language Clauses

The syntax of the query language is composed of the following clauses.

Each clause starts with one or two keywords. All clauses are optional.

Clauses are separated by spaces. The order of the clauses must be as

follows:

Clause Usage

select (#Select) Selects which columns to return, and in what order. If omitted,

all of the table's columns are returned, in their default order.

where (#Where) Returns only rows that match a condition. If omitted, all rows

are returned.

group by

 (#Group_By)

Aggregates values across rows.

pivot (#Pivot) Transforms distinct values in columns into new columns.

order by

 (#Order_By)

Sorts rows by values in columns.

limit (#Limit) Limits the number of returned rows.

offset (#Offset) Skips a given number of first rows.

label (#Label) Sets column labels.

format

 (#Format)

Formats the values in certain columns using given formatting

patterns.

options

 (#Options)

Sets additional options.

Select

The select clause is used to specify the columns to return and their

order. If this clause is not specified, or if select * is used, all of the

columns of the data source table are returned, in their original order.

Columns are referenced by the identifiers (not by labels). For example, in

a Google Spreadsheet, column identifiers are the one or two character

column letter (A, B, C, ...).

Items in a select clause can be column identifiers, or the output of

aggregation functions (#aggregation_functions), scalar functions

 (#scalar_functions), or operators (#operators).

Examples:

In the following example, back-quotes are used to reference column ids

that contain spaces (email address) or that are reserved words (date):

select *

select dept, salary

select max(salary)

Running the following query on the example table

 (#Table_used_in_Examples):

Returns the following response:

lunchTime name

12:00:00 John

12:00:00 Dave

13:00:00 Sally

12:00:00 Ben

12:00:00 Dana

13:00:00 Mike

Where

The where clause is used to return only rows that match a specified

condition.

select `email address`, name, `date`

select lunchTime, name

The simple comparison operators are <=, <, >, >=, =, !=, <>. Both

comparison operators != <> mean not-equal. Strings are compared by

lexicographic value. Note that equality is indicated by =, not == as in most

computer languages. Comparing to null is done using is null or is

not null.

You can join multiple conditions using the logical operators and, or, and

not. Parentheses can be used to define explicit precedence.

The where clause also supports some more complex string comparison

operators. These operators take two strings as arguments; any non-

string arguments (for example, dates or numbers) will be converted to

strings before comparison. String matching is case sensitive (you can

use upper() or lower() scalar functions (#scalar_functions) to work

around that).

contains - A substring match. whole contains part is true if part

is anywhere within whole. Example: where name contains

'John' matches 'John', 'John Adams', 'Long John Silver' but not

'john adams'.

starts with - A prefix match. value starts with prefix is true if

prefix is at the beginning of value. Examples: where dept starts

with 'engineering' matches 'engineering' and 'engineering

managers'. where dept starts with 'e' matches 'engineering',

'eng', and 'e'.

ends with - A suffix match. value ends with suffix is true if suffix

is at the end of value. Example: where role ends with 'y'

matches 'cowboy', 'boy', and 'y'.

matches - A (preg) regular expression match. haystack matches

needle is true if the regular expression in needle matches haystack.

Examples: where country matches '.*ia' matches India and

Nigeria, but not Indiana. Note that this is not a global search, so

where country matches 'an' will not match 'Canada'.

like - A text search that supports two wildcards: %, which

matches zero or more characters of any kind, and _ (underscore),

which matches any one character. This is similar to the SQL LIKE

operator. Example: where name like fre% matches 'fre', 'fred',

and 'freddy'.

Examples:

Running the following query on the example table

 (#Table_used_in_Examples):

Returns the following response:

name

where salary >= 600

where dept != 'Eng' and date '2005-01-21' < hireDate

where (dept<>'Eng' and isSenior=true) or (dept='Sales') or se

select name where salary > 700

John

Mike

Group By

The group by clause is used to aggregate values across rows. A single

row is created for each distinct combination of values in the group-by

clause. The data is automatically sorted by the grouping columns,

unless otherwise specified by an order by clause.

Note: If you use a group by clause, then every column listed in the select clause

must either be listed in the group by clause, or be wrapped by an aggregation

function (#aggregation_functions).

Examples:

Running the following query on the example table

 (#Table_used_in_Examples):

Returns the following response:

select dept, max(salary) group by dept

select lunchTime, avg(salary), count(age) group by isSenior,l

lunchTime avg-salary count-age

12:00:00 425 2

13:00:00 600 1

12:00:00 700 2

13:00:00 800 1

Pivot

The pivot clause is used to transform distinct values in columns into

new columns. For example, a pivot by a column 'year' would produce a

table with a column for each distinct year that appears in the original

table. This could be useful if, for instance, a line chart visualization

draws each column as a separate line. If you want to draw a separate

line for each year, and 'year' is one of the columns of the original table,

then a good option would be to use a pivot operation to do the

necessary data transformation.

Note: If you use a pivot clause, then every column listed in the select clause

must either be listed in the group by clause, or be wrapped by an aggregation

function (#aggregation_functions)

Since multiple rows may contain the same values for the pivot columns,

pivot implies aggregation. Note that when using pivot without using

group by, the result table will contain exactly one row. For instance,

running the following query on the example table

 (#Table_used_in_Examples):

Returns the following response:

Eng sum-salary Marketing sum-salary Sales sum-salary

2100 800 750

This is because 2100 is the sum of the salaries for the Eng department,

800 for the Marketing department, etc.

Using pivot together with group by can be even more useful, since it

creates a table where each cell contains the result of the aggregation

for the relevant row and the relevant column. For example, running the

following query on the example table (#Table_used_in_Examples):

Returns the following response:

dept 12:00:00 sum-salary 13:00:00 sum-salary

Eng 1500 600

Marketing null 800

select sum(salary) pivot dept

select dept, sum(salary)

 group by dept

 pivot lunchTime

Sales 750 null

You can also "invert" this table, switching columns and rows, by

switching between the pivot columns and the group by columns.

Running the following query on the example table

 (#Table_used_in_Examples):

Returns the following response:

lunchTime Eng sum-salary Marketing sum-salary Sales sum-salary

12:00:00 1500 null 750

13:00:00 600 800 null

You can also use more than one column in the pivot clause. In such a

case the columns of the response table are composed of all the unique

combinations of values in the columns that exist in the original table.

For instance, running the following query on the example table

 (#Table_used_in_Examples):

select lunchTime, sum(salary)

 group by lunchTime

 pivot dept

select sum(salary)

 pivot dept, lunchTime

Returns the following response:

Eng,12:00:00

sum-salary

Eng,13:00:00

sum-salary

Marketing,13:00:00

sum-salary

Sales,12:00:00

sum-salary

1500 600 800 750

Note that only the combinations that appear in the original table are

given columns in the response table. This is why there is no column for

Marketing,12:00:00 or for Sales,13:00:00.

Using more than one aggregation is also possible. For instance, running

the following query on the example table (#Table_used_in_Examples):

Returns the following response:

Eng sum-

salary

Marketing

sum-salary

Sales

sum-

salary

Eng max-

lunchTime

Marketing max-

lunchTime

Sales max-

lunchTime

2100 800 750 13:00:00 13:00:00 12:00:00

You can combine multiple aggregations in the select clause, multiple

columns in the group by clause and multiple columns in the pivot

clause. Internally, aggregation is performed by the concatenation of the

columns in the group by and pivot clauses.

select sum(salary), max(lunchTime)

 pivot dept

Columns specified in the pivot clause may not appear in the select,

group by or order by clauses. When pivot is used, the order by

clause cannot contain any aggregation columns. The reason for that is

that for each aggregation specified in the select clause, many columns

are generated in the result table. However, you can format aggregation

columns when pivot is used. The result of such a format is that all of

the new columns relevant to the specific aggregation, that are generated

by the pivot operation, are formatted by the specified pattern. In the

example above, adding format sum(salary) "some_format_string"

will affect the following columns: Eng sum-salary, Marketing sum-salary

and Sales sum-salary.

You can label aggregation columns. If no label is specified in the label

clause, the label of a column that is produced as a result of pivoting is

composed of the list of values in the pivot columns, the aggregation

type (min, max, sum, ...) and the aggregated column's label. For example

"Eng,12:00:00 sum Salary". If only one aggregation was specified in the

select clause then the aggregation part is removed from the label, and

only the list of values in the pivot columns is kept. For example

"Eng,12:00:00". When a label clause specifies a label for an

aggregation column, then the label requested is appended to the list of

values, both when there is only one aggregation in the select clause,

and when there is more than one. For example, label sum(salary)

"sumsal" will result in the column labels "Eng,12:00:00 sumsal",

"Eng,13:00:00 sumsal", etc.

Order By

The order by clause is used to sort the rows by the values in specified

columns.

Items in an order by clause can be column identifiers, or the output of

aggregation functions (#aggregation_functions), scalar functions

 (#scalar_functions), or operators (#operators).

Examples:

Limit

The limit clause is used to limit the number of returned rows.

Example:

Offset

The offset clause is used to skip a given number of first rows. If a

limit (#Limit) clause is used, offset is applied first: for example, limit

15 offset 30 returns rows 31 through 45.

Examples:

order by dept, salary desc

select dept, max(salary) group by dept order by max(salary)

limit 100

Label

The label clause is used to set the label for one or more columns. Note

that you cannot use a label value in place of an ID in a query.

Items in a label clause can be column identifiers, or the output of

aggregation functions (#aggregation_functions), scalar functions

 (#scalar_functions), or operators (#operators).

Syntax:

column_id

The identifier of the column (#Identifiers) being assigned the label.

label_string

The label to assign to that column. Many visualizations use the

column label as text to display to the end-user, such as a legend

label in a pie chart. Labels are string literals (#stringliteral), and

follow those syntax rules.

Example:

offset 10

limit 30 offset 210

label column_id label_string [,column_id label_string]

The following example sets the label for the dept column to

"Department", the label for the name column to "Employee Name", and

the label for the location column to "Employee Location":

Format

The format clause is used to specify a formatted value for cells in one

or more columns. The returned data should include both an actual value

and a formatted value for each cell in a formatted column. Many

visualizations use the unformatted value for calculations, but the

formatted value for display. The patterns that you specify in this clause

are usually returned in the pattern

 (/chart/interactive/docs/reference#dataparam) property of the

corresponding columns.

Pattern Syntax:

number, date, timeofday, datetime

The date

 (https://unicode-org.github.io/icu-

docs/apidoc/released/icu4j/com/ibm/icu/text/SimpleDateFormat.html)

and number

 (https://unicode-org.github.io/icu-

docs/apidoc/released/icu4j/com/ibm/icu/text/DecimalFormat.html)

patterns defined by the ICU (http://site.icu-project.org/).

label dept 'Department', name "Employee Name", location 'Empl

https://developers.google.com/chart/interactive/docs/reference#dataparam
https://developers.google.com/chart/interactive/docs/reference#dataparam
https://developers.google.com/chart/interactive/docs/reference#dataparam
https://developers.google.com/chart/interactive/docs/reference#dataparam
https://unicode-org.github.io/icu-docs/apidoc/released/icu4j/com/ibm/icu/text/SimpleDateFormat.html
https://unicode-org.github.io/icu-docs/apidoc/released/icu4j/com/ibm/icu/text/SimpleDateFormat.html
https://unicode-org.github.io/icu-docs/apidoc/released/icu4j/com/ibm/icu/text/SimpleDateFormat.html
https://unicode-org.github.io/icu-docs/apidoc/released/icu4j/com/ibm/icu/text/SimpleDateFormat.html
https://unicode-org.github.io/icu-docs/apidoc/released/icu4j/com/ibm/icu/text/SimpleDateFormat.html
https://unicode-org.github.io/icu-docs/apidoc/released/icu4j/com/ibm/icu/text/DecimalFormat.html
https://unicode-org.github.io/icu-docs/apidoc/released/icu4j/com/ibm/icu/text/DecimalFormat.html
https://unicode-org.github.io/icu-docs/apidoc/released/icu4j/com/ibm/icu/text/DecimalFormat.html
https://unicode-org.github.io/icu-docs/apidoc/released/icu4j/com/ibm/icu/text/DecimalFormat.html
https://unicode-org.github.io/icu-docs/apidoc/released/icu4j/com/ibm/icu/text/DecimalFormat.html
http://site.icu-project.org/
http://site.icu-project.org/
http://site.icu-project.org/

boolean

Pattern is a string in the format 'value-if-true:value-if-false'.

Example:

Options

The options clause is used to control additional options for query

execution. Possible keywords that can follow the options clause are:

no_format Removes formatted values from the result, and leaves

only the underlying values. Can be used when the specific

visualization does not use the formatted values to reduce the size

of the response.

no_values Removes underlying values from the result, and leaves

only the formatted values. Can be used when the specific

visualization uses only the formatted values to reduce the size of

the response.

Data Manipulation Functions

format salary '#,##0.00', hireDate 'dd-MMM-yyyy', isSenior 'Y

There are several kinds of operators and functions that let you

manipulate or aggregate data in a single column, or compare or

combine data across columns. Examples include sum() (to add all

values in a column), max (to find the largest value in a column), and +

(to add the values of two columns together in the same row).

Some functions can appear in any clause; some can appear in a subset

of clauses. This is documented below.

Example:

Given this table... If we apply this query... We get

Name SalaryTaxStartDate

Sharon1000 1001/1/2009

Avital 2000 2001/21/2008

Moran 3000 3002/12/2008

Name

AVITAL

MORAN

SHARO

The following data manipulation functions are defined by the Google

Visualization API query language:

Aggregation Functions (#aggregation_functions)

Scalar Functions (#scalar_functions)

Arithmetic Operators (#operators)

select upper(name), year(startDate)

Aggregation Functions

Aggregation functions are passed a single column identifier (#Identifiers),

and perform an action across all values in each group (groups are

specified by group by (#Group_By) or pivot (#Pivot) clauses, or all rows if

those clauses are not used).

Examples:

Aggregation functions can be used in select, order by, label, format

clauses. They cannot appear in where, group by, pivot, limit, offset,

or options clauses.

Here are the supported aggregation functions:

Name Description

Supported

Column

Types

Return

Type

avg() Returns the average value of all values in the

column for a group.

number number

count()Returns the count of elements in the specified

column for a group. Null cells are not counted.

Any type number

select max(salary) // Returns a table with one

select max(salary) group by dept // Returns a table with the

select max(salary) pivot dept // Returns a one-row table w

 // and the max salary for

max() Returns the maximum value in the column for a

group. Dates are compared with earlier being

smaller, strings are compared alphabetically,

with case-sensitivity.

Any type Same type

as column

min() Returns the minimum value in the column for a

group. Dates are compared with earlier being

smaller, strings are compared alphabetically,

with case-sensitivity

Any type Same type

as column

sum() Returns the sum of all values in the column for

a group.

number number

Note: Aggregation functions can only take a column identifier as an

argument:

Scalar Functions

Scalar functions operate over zero or more parameters to produce

another value. Scalar functions can be passed any expression that

evaluates to the parameter of the appropriate type. Note that these

types are the types defined in the Literals (#Literals) section of this

document, which might be slightly different than the similarly named

JavaScript objects.

max(startDate) // OK

min(firstScore) + min(secondScore) // OK

max(year(startDate)) // INVALID. max requires

sum(salary + perks) // INVALID. sum requires

Note that the column name will be changed by wrapping it with a scalar

function.

Scalar functions can take as a parameter anything that evaluates to a

single value:

Scalar functions can be used in any of the following clauses: select

 (#Select), where (#Where), group by (#Group_By), pivot (#Pivot), order by

 (#Order_By), label (#Label), and format (#Format).

Name

year() Returns the year value from a date or datetime

value. For example: year(date "2009-02-

05") returns 2009.

Parameters: One parameter of type date or

datetime

Return Type: number

year(max(startDate))

datediff(now(), todate(1234567890000))

month() Returns the zero-based month value from a

date or datetime value. For example:

month(date "2009-02-05") returns 1.

Note: the months are 0-based, so the function

returns 0 for January, 1 for February, etc.

Parameters: One parameter of type date or

datetime

Return Type: number

day() Returns the day of the month from a date or

datetime value. For example: day(date

"2009-02-05") returns 5.

Parameters: One parameter of type date or

datetime

Return Type: number

hour() Returns the hour value from a datetime or

timeofday value. For example:

hour(timeofday "12:03:17") returns 12.

Parameters: One parameter of type datetime

or timeofday

Return Type: number

minute() Returns the minute value from a datetime or

timeofday value. For example:

minute(timeofday "12:03:17") returns 3.

Parameters: One parameter of type datetime

or timeofday

Return Type: number

second() Returns the second value from a datetime or

timeofday value. For example:

second(timeofday "12:03:17") returns

17.

Parameters: One parameter of type datetime

or timeofday

Return Type: number

millisecond() Returns the millisecond part of a datetime or

timeofday value. For example:

millisecond(timeofday

"12:03:17.123") returns 123.

Parameters: One parameter of type datetime

or timeofday

Return Type: number

quarter() Returns the quarter from a date or datetime

value. For example: quarter(date "2009-

02-05") returns 1. Note that quarters are 1-

based, so the function returns 1 for the first

quarter, 2 for the second, etc.

Parameters: One parameter of type date or

datetime

Return Type: number

dayOfWeek() Returns the day of week from a date or

datetime value. For example:

dayOfWeek(date "2009-02-26") returns 5.

Note that days are 1-based, so the function

returns 1 for Sunday, 2 for Monday, etc.

Parameters: One parameter of type date or

datetime

Return Type: number

now() Returns a datetime value representing the

current datetime in the GMT timezone.

Parameters: None

Return Type: datetime

dateDiff() Returns the difference in days between two

date or datetime values. Note: Only the date

parts of the values are used in the calculation

and thus the function always returns an integer

value. For example: dateDiff(date "2008-

03-13", date "2008-02-12") returns 29;

dateDiff(date "2009-02-13", date

"2009-03-13") returns -29. Time values are

truncated before comparison.

Parameters: Two parameters of type date or

datetime (can be one of each)

Return Type: number

toDate() Transforms the given value to a date value.

Given a date, it returns the same value.

Given a datetime, it returns the date part.

For example: toDate(dateTime "2009-

01-01 12:00:00") returns "2009-01-01".

Given a number N, it returns a date N

milliseconds after the Epoch. The Epoch is

defined as January 1,1970, 00:00:00 GMT.

For example: toDate(1234567890000)

returns "2009-02-13".

Parameters: One parameter of type date,

datetime, or number

Return Type: date

upper() Returns the given string in upper case letters.

For example: upper("foo") returns "FOO".

Parameters: One parameter of type string

Return Type: string

lower() Returns the given string in lower case letters.

For example: lower("Bar") returns "bar".

Parameters: One parameter of type string

Return Type: string

Arithmetic Operators

You can use arithmetic operators to perform mathematic operations

upon anything that evaluates to single number (that is, the output of

appropriate aggregate functions, operators, or constants).

Examples:

The following operators are defined:

NameDescription Parameters
Return

Type

+ Returns the sum of two number values. Two

numbers

number

select empSalary - empTax

select 2 * (max(empSalary) / max(empTax))

- Returns the difference between two number values.Two

numbers

number

* Returns the product of two numbers. Two

numbers

number

/ Returns the quotient of two numbers. Division by

zero returns null.

Two

numbers

number

Language Elements

Literals

Literals are values used for comparisons or assignments. Literals can

be strings, numbers, boolean values, or various date/time types. Here

are some examples of literals used in query syntax:

Here are the formats for each type of literal:

string

A string literal should be enclosed in either single or double

quotes. Examples: "fourteen" 'hello world' "It's

raining".

where startDate < date "2008-03-18" // date "2008-03-18" is

limit 30 // 30 is a numeric liter

format salary '#,##0.00', isSenior 'not yet:of course!' // '

number

Numeric literals are specified in decimal notation. Examples:

3 3.0 3.14 -71 -7.2 .6

boolean

Boolean literals are either true or false.

date

Use the keyword date followed by a string literal in the format

yyyy-MM-dd. Example: date "2008-03-18".

timeofday

Use the keyword timeofday followed by a string literal in the

format HH:mm:ss[.SSS] Example: timeofday "12:30:45".

datetime

A date and a time, using either the keyword datetime or the

keyword timestamp followed by a string literal in the format

yyyy-MM-dd HH:mm:ss[.sss]. Example: datetime '2008-03-18

12:30:34.123'

Identifiers

Identifiers (or IDs) are text strings that identify columns.

Important: If your identifier

Has spaces,

Is a reserved word (#Reserved_Words),

Contains anything but alphanumeric characters or underscores

([a-zA-Z0-9_]), or

Starts with a digit

it must be surrounded by back-quotes (not single quotes).

Otherwise, your identifier does not need to be quoted. (Note that not all

keywords defined by the syntax are reserved words; so, for example, you

can use "max" as an identifier, without having to back-quote it.)

Examples: col1 employee_table `start date` `7 days

traffic` `select`

We recommend against choosing an identifier that requires back-quotes, because

it can be easy to forget to use the back-quotes, or to accidentally use 'single

quotes' instead of `back-quotes`. These are common mistakes, and often hard to

debug.

Case Sensitivity

Identifiers and string literals are case-sensitive. All other language

elements are case-insensitive.

Reserved Words

The following reserved words must be back-quoted if used as an

identifier (#Identifiers):

and

asc

by

date

datetime

desc

false

format

group

label

limit

not

offset

options

or

order

pivot

select

timeofday

timestamp

true

where

